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Biological age model using explainable
automated CT-based cardiometabolic
biomarkers for phenotypic prediction of
longevity

Perry J. Pickhardt 1,2 , Michael W. Kattan 3, Matthew H. Lee1,
B. Dustin Pooler1, Ayis Pyrros4,5, Daniel Liu 1, Ryan Zea1,
Ronald M. Summers 6 & John W. Garrett 1,2

We derive and test a CT-based biological age model for predicting longevity,
using an automated pipeline of explainable AI algorithms that quantifies ske-
letal muscle, abdominal fat, aortic calcification, bone density, and solid
abdominal organs.We apply theseAI tools to abdominal CT scans from 123,281
adults (mean age, 53.6 years; 47% women; median follow-up, 5.3 years). The
final weighted CT biomarker selection was based on the index of prediction
accuracy. The CTmodel significantly outperforms standard demographic data
for predicting longevity (IPA = 29.2 vs. 21.7; 10-year AUC=0.880 vs. 0.779;
p < 0.001). Age- and sex-corrected survival hazard ratio for the highest-vs-
lowest risk quartilewas 8.73 (95%CI,8.14-9.36) for theCT biological agemodel,
and increased to 24.79 after excluding cancer diagnoses within 5 years of CT.
Muscle density, aortic plaque burden, visceral fat density, and bone density
contributed the most. Here we show a personalized phenotypic CT biological
age model that can be opportunistically-derived, regardless of clinical indi-
cation, to better inform risk assessment.

The aging process reflects the inexorable structural and functional
decline of an organism1, although the specific mortality risk over time
can widely vary according to a host of genetic and environmental
modifiers. Historically, chronological age and sex have driven many
healthcare decisions regarding prevention, screening, and interven-
tion. However, chronological age represents an incomplete and fallible
measure of health status (or “healthspan”) and longevity, and there is
growing public awareness that other contributing factors should be
considered2–4. Biological age (BA) is a potentially useful construct that
attempts to reflect the cumulative physiologic effect of lifestyle habits,

genetic predisposition, and superimposed disease processes beyond
simply the number of years lived. Attempts at deriving an effective BA
date back at least half a century5, but with only limited success. Much
of the current geroscience focus to date for attempting to derive an
effective BA has centered on various “frailomics” at the cellular and
subcellular levels, including (epi)genomics (eg, telomere length and
epigenetic clock), proteomics, and metabolomics, as well as various
other laboratory and clinical measures1,6–9.

Imaging biomarkers have generally received less attention for
estimating BA7,8, but arguably may better reflect the cumulative

Received: 22 July 2024

Accepted: 23 January 2025

Check for updates

1The Department of Radiology, University ofWisconsin School ofMedicine & PublicHealth, Madison,WI, USA. 2The Department of Medical Physics, University
ofWisconsin School of Medicine & PublicHealth,Madison,WI, USA. 3The Department ofQuantitative Health Sciences, ClevelandClinic, Cleveland, OH, USA.
4Department of Radiology, Duly Health and Care, Downers Grove, IL, USA. 5Department of Biomedical and Health Information Sciences, University of Illinois-
Chicago, Chicago, IL, USA. 6Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health
Clinical Center, Bethesda, MD, USA. e-mail: ppickhardt2@uwhealth.org

Nature Communications |         (2025) 16:1432 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5534-8202
http://orcid.org/0000-0002-5534-8202
http://orcid.org/0000-0002-5534-8202
http://orcid.org/0000-0002-5534-8202
http://orcid.org/0000-0002-5534-8202
http://orcid.org/0000-0002-3840-4161
http://orcid.org/0000-0002-3840-4161
http://orcid.org/0000-0002-3840-4161
http://orcid.org/0000-0002-3840-4161
http://orcid.org/0000-0002-3840-4161
http://orcid.org/0000-0002-2524-5368
http://orcid.org/0000-0002-2524-5368
http://orcid.org/0000-0002-2524-5368
http://orcid.org/0000-0002-2524-5368
http://orcid.org/0000-0002-2524-5368
http://orcid.org/0000-0001-8081-7376
http://orcid.org/0000-0001-8081-7376
http://orcid.org/0000-0001-8081-7376
http://orcid.org/0000-0001-8081-7376
http://orcid.org/0000-0001-8081-7376
http://orcid.org/0000-0002-8152-736X
http://orcid.org/0000-0002-8152-736X
http://orcid.org/0000-0002-8152-736X
http://orcid.org/0000-0002-8152-736X
http://orcid.org/0000-0002-8152-736X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56741-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56741-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56741-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56741-w&domain=pdf
mailto:ppickhardt2@uwhealth.org
www.nature.com/naturecommunications


macroscopic effects of aging at the tissue and organ levels. In parti-
cular, abdominal computed tomography (CT) represents an appealing
candidate for a more personalized investigation. Specifically, CT can
provide an objective, understandable, and reproducible assessment of
internal tissue composition, including quantitative measures of ske-
letal muscle, abdominal fat, vascular calcification, bone density, and
other organs10,11. When combined, these CT-based cardiometabolic
biomarkers may better reflect the combined phenotypical character-
istics that result from the interaction of one’s genotype with environ-
mental factors and lifestyle. In particular, CT can reveal findings of
silent, pre-symptomatic disease processes such as osteoporosis,
atherosclerosis, sarcopenia, and metabolic syndrome, potentially
allowing for earlier preventive action12–17. Consequently, these CT-
based measures have been shown to correlate with aging and
survival13. Furthermore, the once arduous task of manually deriving
these CT biomarkers has been replaced by “explainable” or under-
standable artificial intelligence (AI) algorithms that are rapid and
indefatigable18. Unlike other frailomic approaches, these CT-based
cardiometabolic biomarkers can be derived retrospectively (or pro-
spectively), regardless of the clinical indication, including scans per-
formedmany years earlier to allow for both “snapshots in time” and for
built-in longitudinal follow-up for survival analysis10. Given that CT
scans are the most frequently performed abdominal imaging test in
middle-age and older adults19, the opportunity already exists to
leverage or repurpose this body composition data for general health
assessment10,18.

The purpose of this study was to derive an abdominal CT-based
biological age (CTBA) model informed only by an automated pipeline
of validated cardiometabolic biomarkers and compare survival pre-
diction over the usual demographic input data of chronological age,
sex, and race.

Results
The final study cohort consisted of 123,281 adults (mean age 53.6 years
[SD 17.4]; 58,308 [47%] women and 64,973 [53%]men) who underwent
abdominal CT scanning over a 20-year time interval. Median clinical

post-CT follow-up was 5.3 years and more than one-quarter of all
patients had over a decade of follow-up (IQR, 1.9-10.4 years). A total of
26,554 (22%) patients died over thepost-CT follow-up interval, whereas
the remaining 96,727 (78%) were alive at last verifiable clinical contact.
The median post-CT clinical follow-up interval was 6.0 years [IQR
2.6–11.3] for individuals still alive at last contact, and 2.6 years [IQR
0.7–6.8] for those who died. By race, the patient cohort was pre-
dominately White (92%), followed by Black (5%), Asian (2%), American
Indian (1%), and Hawaiian (<1%) descent.

From the full panel of potential automated CTmeasures (Fig. 1), a
totalof eight biomarkers contributed sufficiently to theCTBAmodel to
warrant inclusion. Of these, muscle density, abdominal aortic calcium
score, visceral fat density, bone density, and visceral-to-subcutaneous
fat ratio demonstrated the largest IPA drop, signifying the greatest
contribution to the CTBA model. A patient example is shown in Fig. 2.
Thefinal panel of CTbiomarkers, including their drop in IPA values, are
shown in Table 1, along with the results of the demographics model
utilizing patient chronological age, sex, and race. As expected, the
demographicsmodelwas largely driven by chronological age, towhich
the CTBA model is blinded. For the full CTBA model, the index of
prediction accuracy (or IPA) was 29.2, comparedwith an IPA of 21.7 for
the demographics (chronological age/sex/race) model (p < 0.001). A
nomogram for predicting survival according to the CTBA model is
shown in Fig. 3, as well as a scatter plot for individual survival predic-
tion by the CTBA model.

Skeletal muscle density was the dominant CT biomarker in the
survivalmodel, whereasmuscle area played only aminor role. In terms
of ROCcurve analysis, the 5-year and 10-year AUCs for the CTBAmodel
were 0.890 (95% CI, 0.884–0.896) and 0.880 (95% CI, 0.875–0.885),
respectively, compared with 0.784 (95% CI, 0.776–0.792) and 0.782
(95% CI, 0.776–0.788) using patient CA, sex, and race, respectively
(p < 0.001). For BMI, 5-year and 10-year AUCs were 0.520 (95% CI,
0.509–0.532) and 0.536 (95% CI, 0.526-0.546), respectively. For most
CT biomarkers used in the CTBA model, substantial differences were
observed between patients who died versus survived during their
clinical follow-up. For example, Table 2 shows the difference in these

Fig. 1 | Overview of the CT-based AI pipeline. Schematic flowchart of AI pipeline for the fully automated CT body composition biomarkers.
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biomarker measures for patients who died within 5 years after CT
versus those who survived at least 5 years after CT, according to age
group and sex. Neither the hepatic nor splenic biomarkers contributed
to the final CTBA model, with a drop in IPA values < 0.1.

A Kaplan-Meier plot according to CTBA model output quartiles
for the full study cohort is shown in Fig. 4. The age- and sex-corrected
survival HR for the highest versus lowest risk CTBA quartile was 8.73
(95%CI, 8.14–9.36). When comparing the highest risk against the other
three quartiles, the age- and sex-corrected HR was 3.13 (95% CI,
3.04–3.23). Kaplan-Meier plots subcategorized by patient sex (males
and females), middle age (40–59 years), and older age (60–79 years)

are shown in Fig. 5. Tomitigate the risk of immediatemortality bias, we
repeated the analysis after excluding patients diagnosed with cancer
within 5 years of CT and after excluding patients who died within 2
years of CT. Accordingly, the age- and sex-corrected survival HRs for
the highest-vs-lowest risk CTBA quartile increased to 24.79 after
excluding cancer and 17.06 after excluding imminent death. Table 3
provides more complete AUC and HR results for the total cohort and
sub-cohorts. To further reduce the influence of patient age on the
model performance, we performed sub-analyses according to 5-year
intervals; results are shown in Table 4 and Supplementary Fig. 1. An
example case is shown in Fig. 2 for a patient in the highest-risk CTBA
quartile.

External validation cohort
The final study group for the external validation cohort consisted of
40,718 adults (mean age 53.9 years [SD 16.9]; 22,316 [55%] women and
18,402 [45%] men) who underwent abdominal CT over a 20-year time
interval. Median clinical post-CT follow-up was 5.3 years (IQR, 2.9–8.8
years), consisting of 253,298 total person-years of follow-up. A total of
3718 (9%) patients died over the post-CT follow-up interval, whereas
the remaining 37,000 (91%) were alive at last verifiable contact. The
median post-CT clinical follow-up interval was 5.4 years [IQR 3.1–9.0]
for individuals still alive at last contact, and 3.5 years [IQR 1.4–6.9] for
those who died. According to race, the patient cohort was pre-
dominately White (89%), followed by Black (5%), Asian (6%), American
Indian (<1%), and Hawaiian (<1%) descent.

The CTBA model performed similarly well on the external vali-
dation cohort, with a full model IPA of 28.6, comparedwith 18.5 for the
demographics model. A calibration plot of the CTBA model on this
external cohort is shown in Fig. 6. The 5-year and 10-year AUC values
were 0.893 (95% CI, 0.867–0.918) and 0.888 (95% CI, 0.869–0.908),
respectively. A Kaplan-Meier survival plot for the external validation
cohort based on CTBAmodel quartiles is shown in Fig. 6. The age- and
sex-corrected survival HR for the highest-vs-lowest risk CTBA quartile
was 5.14 (95% CI, 3.98–6.63). When comparing the highest-risk against
the other three quartiles, the age- and sex-corrected HR was 2.45 (95%
CI, 2.24–2.69).

Fig. 2 | Middle-age adult patient who underwent CT for nonspecific abdominal
pain (Case example from the primary cohort). Axial images from abdominal CT
at the L1 and L3 vertebral levels (left), with the corresponding axial (middle) and
coronal MIP (right) QA images automatically derived from the AI biomarker tools.
This patient had no relevant past medical history except for hypertension. Beyond
hepatic steatosis, the scan was interpreted as normal. Ten months after CT, the
patient suffered an acutemyocardial infarction and underwent emergent coronary
artery bypass. The patient then suffered a stroke five years later and died

prematurely three years after that (9.2 years after CT). According to the CTBA
model, the patient was within the highest-risk quartile and had a predicted 10-year
survival of 49% from the time of CT. Many key CT biomarkers contributing to the
CTBAmodelwereabnormal (seeTable 3 for comparison):muscle density = 32.9HU,
aortic Agatston score = 12,342, visceral fat density = -88.7 HU, trabecular bone
density = 110.0 HU, and visceral-to-subcutaneous fat ratio (VSR) = 1.99. All of these
CTbiomarkers were in the 66th-99th percentile formiddle-agedmen, with VSR at the
92nd percentile and aortic Agatston score at the 99th percentile.

Table 1 |Model results according todrop in indexofpredictive
accuracy (IPA)

CTBA Model:

Full Model IPA = 29.2

Automated CT Biomarker* Drop in IPA**

Skeletal muscle density 5.1

Aortic calcium score 2.0

Visceral adipose tissue density 1.5

L1 trabecular bone density 1.1

Visceral-to-subcutaneous fat ratio (VSR) 0.4

Kidney volume 0.3

Subcutaneous adipose tissue area 0.2

Skeletal muscle area 0.1

Demographics Model:

Full Model IPA = 21.7

Demographic measure Drop in IPA**

Chronological age 21.1

Sex 0.3

Race 0.1

*CT biomarkers with an IPA-drop <0.1 were excluded from the final model.
**A larger IPA-drop signifies a greater contribution to the model prediction results.
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Fig. 3 | Nomogram and scatter plot for CT biological age (CTBA) model for
predicting survival. A For each CT biomarker, points are assigned according to a
vertical line through the specific biomarker value and the points scale at the top.
After summing the points for each predictor, the total points then correspond to a
survival probability at the bottom. Note the dominant potential contribution

related to muscle density. B Individual patient data points for predicted mortality
risk are displayed according to chronological age, to which themodel was blinded.
Solid red (women) and blue (men) lines indicate the overall median predicted 10-
year survival probability based on the CTBA model.
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Discussion
We found that a prediction model incorporating only understandable
CT-based biomarkers of abdominal tissues and organs can provide a
useful assessment of cardiometabolic health and estimation of long-
evity. This study demonstrates the value of harnessing the rich bio-
metric tissue and organ data embedded within all body CT scans, but
which typically go unused in routine practice10,13,18. Regardless of clin-
ical indication, these CT scans can be opportunistically leveraged as an
objective means for detecting silent or pre-symptomatic cardiometa-
bolic conditions, including cardiovascular disease, osteoporosis, sar-
copenia, diabetes, and metabolic syndrome12–17. When previously
unsuspected, these CT findings could initiate early preventive mea-
sures. For individuals with suspected or known risk factors, the
objective and visual nature of the CT biomarker display may none-
theless motivate positive action. The advent of fully automated AI-
based algorithms to mimic and replace more arduous manual
approaches to theseCT-basedmeasurements provides for an efficient,
explainable, objective, and reproducible method that is generalizable.
Since body CT scans are already performed in such high volumes in
middle-aged and older adults for a wide array of reasons19, the
potential for quasi- population-based opportunistic screening already
exists.

The concept of biological aging is not new, but has lately become
a topic of keenpublic interest, as seen in the recent lay press2–4. Beyond
just the health-conscious “worried well”, there is growing recognition
that many health care decisions should not be based solely on
chronological age, but rather should account for the cumulative phy-
siologic effects of lifestyle habits, genetic predisposition, and super-
imposed disease processes. The burgeoning interdisciplinary field of
geroscience has largely focused on cellular and subcellular bio-
markers, such as mitochondrial dysfunction, proteostasis, stem cell
dysfunction, nutrient sensing, genomic instability, telomere dysfunc-
tion, cellular senescence, and epigenetic change8. These “frailomics”
measures of aging will undoubtedly provide some insight, but are
unlikely to fully translate to the overall state of health of tissues,
organs, or most importantly, the individual patient at the
organism level.

Radiologic imaging biomarkers, whether more straightforward
“explainable”measures aswe employormore complex radiomics (that
we avoid), have generally received little attention for their potential
role in determining an effective biological age7,9. In fact, a recent
international task force on biological aging enumerated a myriad of
potential biomarkers but failed to include imaging biomarkers and
radiomics8. However, we believe that imaging features (particularly
CT-based) may better reflect the cumulative macroscopic effects of
aging at the tissue and organ levels. Although numerous studies have
shown a correlation between various imaging findings and patient age,
comparatively few have explored the concept of biological aging20–22.
Furthermore, we are not aware of any prior large-scale population-
based studies on the order of 100,000 patients. In general, the model
performed slightly better in middle-age adults compared with older
adults. This may be advantageous in terms of amore opportune target
age for preventive interventions.

Our findings suggest that CT-based cardiometabolic biomarkers
can effectively reflect the phenotypic pathologic and senescent
changes at the tissue, organ, and organism levels that result from the
interaction of environmental factors on genetic predisposition. These
macroscopic changes may be more relevant than (or at least com-
plementary to) changes observed at the cellular or subcellular level. By
utilizing only explainable AI algorithms, as opposed to a more “black
box” radiomics methodology, we believe this transparent approach
could be more readily understood and accepted by patients and
adopted by healthcare providers. The explainable methodology for
our CTBAmodel provides transparency and avoids the opaqueness of
deep learning approaches. Furthermore, our feature selection processTa
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using the IPA drop retains only biomarkers that improve predictive
accuracy.

Clinical frailty assessments in current use are generally aimed
more at advanced geriatric and acute care settings and tend to be
somewhat onerous to execute23. BMI has been in use formany years as
a determinant of health status but this practice is now being dis-
couraged by the AMA and other groups. Our results reinforce the poor
predictive nature of BMI. CT-based biological aging could also serve as
an objective frailty assessment and could be further modified in terms
of reporting for sarcopenia, myosteatosis, and fracture risk12–17. Our
CT-based approach could also be used to augment existing clinical risk
prediction models, assuming the combination provides com-
plementary information. A number of simple online risk calculators
exist, most of which aredisease-specific in scope (eg, for breast or lung
cancer assessment). Broader online risk calculators such as ePrognosis
requiremanual entry of a host of demographic, clinical, and laboratory
data (https://eprognosis.ucsf.edu). While these can provide for some
level of risk assessment, a single CT likely provides more detailed
objective insight into a patient’s actual cardiometabolic status. Of
course, these approaches may prove to be complementary in nature
with CT-based assessment.

The fact that CT-based biomarkers of muscle density, aortic pla-
que burden, visceral fat, and bone mineral density contributed the
most to our CT biological age model was not unexpected given their

Fig. 4 | Kaplan-Meier plot for CT biological age (CTBA) model survival for the
full primary study cohort (n = 123,281). Note the obvious separation in survival
probability over time among the various CTBA risk quartiles, despite the fact that
the model is blinded to demographic factors such as chronological age. Color
bands reflect 95% confidence intervals.

Fig. 5 | Kaplan-Meier survial plots for thepatient sub-cohorts of theprimary study cohort.Depicted are plots forAMale (n = 64,973),B Female (n = 58,308),Cmiddle-
aged (40–59 years, n = 47,651), and D older adult (60–79 years, n = 38,973) cohorts. Color bands reflect 95% confidence intervals.
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established relationship with cardiometabolic disease12,13,17. With the
exception of visceral fat, these biomarkers have a well-defined rela-
tionship with age24–26. However, more effective biological aging likely
goes beyond simple quantification of the cumulative effects of aging,
but also includes inflammation and related metabolic derangements.
Skeletal muscle density, which is measured at CT using attenuation
values and reflects the degree of myosteatosis, was the dominant
biomarker in the CTBA model, whereas muscle cross-sectional area
played a very minor role. This is consistent with prior work showing
that CT-based measures of muscle quality (sarcopenic myosteatosis)
are significantlymorepredictive of survival thanCT-basedmeasures of
muscle quantity (myopenia)12. The prognostic value of coronary cal-
cium scoring at CT is also well established, and we have found that
quantifying calcific plaque of the abdominal aorta is also a powerful
biomarker for risk prediction13,15. Our automated aortic plaque tool
also has the additional advantage that it can be applied to CT scans
with IV contrast27. The opportunity for incidental osteoporosis
screening atCThasalsobeen recognized for over a decade28. However,
manual case-by-case assessment in the course of routine CT inter-
pretation has failed to move the needle like a more programmatic,
automated approach would. There is evidence that the opportunistic

reporting of automated quantification of atherosclerotic plaque and
bone mineral density at abdominal CT would be a cost-saving
measure29. By systematically leveraging or repurposing these inci-
dental tissue and organ measures on CT scans, there could be sub-
stantial implications for more intelligent utilization of limited
healthcare resources.

We acknowledge the limitations to our investigation. Due to the
need for a large patient cohort with built-in long-term survival out-
comes, this was by necessity a retrospective study. The indications for
CT imaging varied widely – both a methodological strength and a
weakness. However, the predictive results of the CTBA model
remained robust after addressing potential issues related to imminent
death, cancer diagnosis, and patient age at CT. Model robustness,
however, does not imply causation. The primary patient cohort and
the external validation cohort lacked substantial racial or ethnic
diversity, with both comprisingMidwestern U.S. populations thatwere
approximately 90% White. We plan to address this limitation with a
multicenter trial consisting of broad national and international parti-
cipation. We did not consider socioeconomic factors in the
demographic-based model, but we also plan to investigate this utiliz-
ing the area deprivation index (ADI), a validated measure of

Table 3 | Results of the CT biological age (CTBA) model

Cohort N 5-year AUC 10-year AUC HR* HR**

Total Cohort 123,281 0.890
(0.884–0.896)

0.880
(0.875–0.885)

8.73
(8.14–9.36)

3.13
(3.04–3.23)

Females 58,308 0.905
(0.898–0.913)

0.889
(0.882–0.896)

8.40
(7.58–9.31)

3.08
(2.95–3.23)

Males 64,973 0.874
(0.865–0.883)

0.871
(0.863–0.878)

8.82
(8.04–9.68)

3.20
(3.07–3.33)

40–59 year-olds 47,651 0.857
(0.841–0.872)

0.842
(0.829–0.856)

7.10
(6.57–7.68)

4.33
(4.13–4.53)

60–79 year-olds 38,973 0.834
(0.824–0.844

0.816
(0.806–0.825)

5.13
(4.83–5.45)

3.26
(3.15–3.38)

Excluding Death within 2 years 111,596 0.820 (0.814–0.826) 0.838
(0.833–0.842)

17.06
(15.85–18.36)

6.09 (5.90–6.30)

Excluding Cancer within 5 years† 101,203 0.876
(0.872–0.880)

0.880
(0.877–0.884)

24.79
(22.95–26.76)

8.44
(8.18–8.71)

External Cohort 40,718 0.893
(0.867–0.918)

0.888
(0.869–0.908)

5.14
(3.98–6.63)

2.45
(2.24–2.69)

TheCTBAmodelwas constructed fromCT-biomarkers only, without any input regardingchronological age, sex, or race; HRs are age- and sex-corrected for total and external validation cohorts; HRs
for sex cohorts were corrected for age, whereas HRs for age cohorts were corrected for sex.
*Comparing the highest-risk CTBA quartile vs the lowest-risk quartile.
**Comparing the highest-risk CTBA quartile vs the other three quartiles.
†Cancer diagnosis within 5 years before or after CT.

Table 4 | Age-specific results of the CT biological age (CTBA) model

Cohort N 5-year AUC 10-year AUC HR* HR**

40–44 year-olds 9048 0.867
(0.821–0.914)

0.832
(0.793–0.872)

6.54
(5.27–8.11)

4.41
(3.88–5.02)

45–49 year-olds 10,623 0.842
(0.807–0.878)

0.821
(0.790–0.853)

5.17
(4.40–6.07)

3.58
(3.24–3.96)

50–54 year-olds 14,257 0.845
(0.814–0.876)

0.854
(0.831–0.877)

6.62
(5.78–7.58)

4.38
(4.03–4.75)

55–59 year-olds 13,723 0.859
(0.834–0.883)

0.834
(0.812–0.855)

6.46
(5.72–7.31)

3.95
(3.66–4.26)

60–64 year-olds 12,703 0.839
(0.817–0.862)

0.826
(0.807–0.847)

3.57
(3.34–-3.83)

3.61
(3.37–3.87)

65–69 year-olds 11,226 0.847
(0.824–0.866)

0.821
(0.803–0.839)

4.62
(4.17–5.11)

3.16
(2.95–3.38)

The CTBA model was constructed from CT-biomarkers only, without any input regarding chronological age, sex, or race; HRs for these age sub-cohorts are corrected for sex.
*Comparing the highest-risk CTBA quartile vs the lowest-risk quartile.
**Comparing the highest-risk CTBA quartile vs the other three quartiles.
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Fig. 6 | Calibration and Kaplan-Meier plots for the CTBA model applied to the
external validation cohort. A The diagonal 45° line represents an ideal model in
which estimates of survival are perfectly calibrated with the outcome. The black
line illustrates the performance of the CTBA model, which approaches the ideal
state. B Kaplan-Meier plot ahows clear separation among the various CTBA risk

quartiles, despite the fact that demographic factors such as chronological age are
not included in the model. This external cohort was composed only of outpatients
and as such appeared healthier overall than the primary cohort, with improved
survival despite similar mean age. Color bands reflect 95% confidence intervals.
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socioeconomic disadvantage30. The automated AI pipeline used to
obtain the CT cardiometabolic biomarkers is a research tool that is not
yet commercially available. The inclusion of demographic, clinical, and
laboratory measures with the CT biomarkers in a combined model
would likely incrementally improve survival prediction butwasbeyond
the scope of this work. Finally, our CT-based biological age model is
based on measurable cardiometabolic and senescent factors and
cannot completely account for other co-existing maladies that may
impact survival, such as trauma, cancer, infection, and dementia,
among others. However, when excluding patients with cancer and
near-term mortality, the CT-based model proved to be even more
robust.

In summary,wehave shown that aCT-basedbiological age (CTBA)
model informed only by a panel of explainable AI-derived biomarkers
provides a phenotypic cardiometabolic assessment for improved and
personalized prediction of remaining life expectancy over usual
demographic inputs. TheseCTmeasures reflect the cumulative impact
of lifestyle, genetic predisposition, and chronological aging. In addi-
tion, these objective body composition findings may reflect an early
pre-symptomatic phase of disease, prior to the development of clini-
cally recognizable findings. This valuable imaging data can be oppor-
tunistically derived from nearly any abdominal CT, whether
retrospectively or prospectively and regardless of the clinical indica-
tion. Incorporating this objective biological information into the full
clinical assessment might better inform downstream healthcare deci-
sions and resource allocation.

Methods
Study design and patient cohort
This retrospective cohort study was HIPAA-compliant and approved
by the IRB at UW-Madison. The need for signed informed consent was
waived for this large retrospective cohort. The initial patient inclusion
criteria were kept intentionally broad, consisting of any adult aged 18
years or older with an abdominal CT scan available in the PACS at the
University of Wisconsin Hospital and Clinics (Madison, WI, USA) per-
formed over a 20-year period. Patient sex was based on self-report
from the electronic medical record. The patient settings for this
cohort, where available, included predominately outpatients (43.6%)
and the ED (41.5%), with a minority of inpatients (14.9%). To mitigate
the risk of immediatemortality bias, we performed a sub-analysis after
excluding all patients who died within 2 years of the CT scan. In
addition, we performed an additional sub-analysis after excluding
patients with a cancer diagnosis within 5 years before or after the CT
scan. Further sub-analyses were also performed after restricting
patient age at the time of CT to five-year windows to minimize the
impact of age. We also curated an external validation cohort of out-
patients from Duly Health and Care (Downers Grove, IL, USA), with CT
scans also performed over a 20-year period.

For the purpose of this study, the earliest available abdominal CT
scan for each patient was used, both to ensure the longest possible
clinical follow-up and to minimize the impact of any subsequent
treatment or interventions. Given the broad inclusion criteria, a wide
variety of clinical indications for scanning at the outpatient, inpatient,
and emergency department settings was observed. The specific make
and model of multi-detector CT scanners are also widely varied, but
theseCTbiomarkers algorithmshaveproven robust to all encountered
vendors31. Additional CT scanning details are included in the metho-
dology supplement. For comparison, we also recorded patient BMI
closest in timing to the CT scan.

The main clinical outcome measure was patient death (all-cause
mortality) or, if not deceased as of their verifiable clinical encounter,
the date of last reliable contact. Acceptable encounters with medical
staff included clinic visit, procedure, hospitalization, laboratory test-
ing, and consultation. Confirmation of death for themain study cohort
was periodically updated using internal and external sources, included

the electronic medical record and the Social Security Death
Master File.

Automated CT biomarker panel
A pipeline of mature, validated, and explainable CT-based AI algo-
rithms automatically quantified skeletal muscle, abdominal fat, aortic
calcification, bone density, liver, spleen, and kidneys, as described
below and in the supplementary methods.

The panel of fully automated deep learning AI CT-based body
composition algorithms used in this investigation have been inte-
grated into a single portable Docker container at the University of
Wisconsin. The individual CT body composition toolswere developed,
trained, and tested in separate cohorts at the NIH Clinical Center and
the University of Wisconsin (see supplementary methods for details).
The tools have been subsequently modified with deep-learning
improvements and validated at the University of Wisconsin. Source
CT data from patient scans were preprocessed and reformatted into
3 × 3-mm series, upon which the AI tools were applied to create the
body composition measures.

The first step for the AI toolkit is automatic vertebral body loca-
lization using a convolutional neural network (CNN) based on the
unsupervised body part regression algorithm and applied in Caffe
(Fig. 1). This process is used to identify the T12 through L4 vertebral
bodies levels, from which the various segmented tissue and organ
composition measures (density, area, volume) are subsequently
derived. Formusclemeasures, a U-Net model architecture was used to
identify the body wall, paraspinal, and psoas musculature, including
intermuscular adipose tissue. Fat and bone measures were obtained
using a U-Net like architecturewith VGG11 encoder to segment visceral
fat, subcutaneous fat, and trabecular bone. Aortic calcification was
quantified using a modified 3D U-Net architecture to determine calci-
fied aortic plaque from the diaphragm to the aortic bifurcation. Cal-
cification is reported as an Agatston score. Volumetric organ
segmentation for the liver, spleen, and kidneys each entailed a mod-
ified 3D U-Net and CycleGAN for CNN segmentation. The specific CT
body composition biomarkers included in this study are listed in
Supplementary Table 1. Figure 1 depicts a schematic flowchart. In
addition to the numerical output for the various CT biomarkers, QA
images (Fig. 2) are derived that depicts the tissue and organ segmen-
tation at the L1 and L3 vertebral levels, as well as a coronal maximum
intensity projection (MIP) to allow for rapid visual confirmation for
individual cases.

CT biological age model methodology and statistical analysis
Multivariate survival analysis was modeled using Cox proportional
hazards regression. A standarddemographics assessment used patient
chronological age, sex, and race as the predictors, whereas the CTBA
model used the CT parameters exclusively, without any demographic
input. Biomarker selection for the CTBA model was performed based
on the index of prediction accuracy (IPA)32. Individual CT biomarkers
were assessed according to their “IPA drop” – the higher the drop, the
more important the biomarker contribution to the CTBAmodel. More
specifically, predictors were ranked by their smallest contribution
towards the IPA and eliminated unless they contributed an IPA drop
value of at least 0.1. Linearity assumptions for continuous predictors
were relaxed by using restricted cubic splines with 3 knots. Predictive
abilities were assessed by calculating the time-dependent areas under
the receiver operating characteristic curve (AUC), aswell as calibration
curves33. These assessments of discrimination and calibration were
done with use of bootstrapping (200 resamples).

Five- and 10-year AUC values were derived for the final CTBA and
demographicsmodels, as well as for BMI. Survival curves were plotted
using the Kaplan-Meier estimator, splitting the CTBA model results
into quartiles. Univariate and multivariate analyses of the cardiome-
tabolic CT biomarkers were performed, with patients chronological
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age, sex, and race considered as potential confounders. Age- and sex-
corrected hazard ratios (HRs) with 95% CIs were computed for the
CTBAmodel, comparing the highest-risk quartile with both the lowest-
risk quartile, and with the other three quartiles. We compiled and
compared summary statistics for patients who died versus survived
over the course of available clinical surveillance. All analyses were
performed using R version 4.3.1.

The CTBA model was not informed by demographic factors
(chronological age, sex, and race), or by any acute or chronic medical
conditions, such as known cardiovascular disease, diabetes, or cancer,
even though this clinical information would have improved the pre-
diction of life expectancy. Consequently, this model was based solely
on the CT biomarkers. A nomogram for this standalone model of
individual CT biomarkers contributing to the CTBA model was gen-
erated. A calibrationplot was constructed to compare theCTBAmodel
survival estimates for the external validation cohort against the
ideal state.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The study protocol and data will be readily shared upon request for
reproducibility purposes. Responses will bemadewithin onemonth of
receipt. Access to the data used for this study will be made available,
subject to an internal review by the authors’ institution to ensure that
participant privacy is protected, and subject to completion of a data
sharing agreement, approval from the institutional review board of
UW-Madison, and in accordance with the current data sharing guide-
lines of UW-Madison and The University of Wisconsin School of
Medicine & Public Health. Please submit such requests to J. W. G.
(JGarrett@uwhealth.org). Source data are provided with this paper.

Code availability
The statistical code will be readily shared upon request for reprodu-
cibility purposes, following review by the authors and approval by the
information security office at the University of Wisconsin School of
Medicine& Public Health. Responseswill bemadewithin onemonthof
receipt. Please submit such requests to J.W. (JGarrett@uwhealth.org).
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